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Selective calibration models are generated for glucose over
the 1-20 nM concentration range by use of partial least-
squares regression analysis of near-infrared spectra from
5000 to 4000 cm-1. Two spectral data sets are used to
simulate triglyceride and protein variations in clinical
samples. Triacetin is used in one data set to simulate
variations in triglyceride levels, and bovine serum albumin
(BSA) is used in the second data set to simulate variations
in blood protein levels. Although these matrix compo-
nents possess strong absorption bands that overlap and
overshadow the absorption bands of glucose, successful
calibration models can be generated with no evidence of
prediction bias caused by the different levels of the matrix
components. Furthermore, the benefits of using digital
Fourier filtering as a preprocessing step are evaluated in
terms of calibration performance. The resulting calibra-
tion models provide standard errors of prediction of 0.5
and 0.2 mM in triacetin and BSA matrices, respectively.
Accurate glucose predictions are demonstrated from
spectra that correspond to protein concentrations not
present in the calibration data set. Lastly, digital Fourier
filtering alone is shown to have only limited ability to
isolate glucose signals from those of BSA and triacetin due
to similarities in the widths of the absorption bands of the
three species.

The use of near-infrared (near-IR) spectroscopy for noninvasive
clinical chemistry measurements is a fascinating possibility1-7 and,

if successfully implemented, would represent a major advancement
in the field of analytical chemistry. This measurement approach
is based on extracting analytical information from near-IR spectra
collected directly from the body tissue of an individual. In
principle, if the analyte of interest absorbs characteristic frequen-
cies of near-IR light, the degree of absorbance can be related to
analyte concentration through the Beer-Lambert relationship. For
essentially all clinically relevant analytes except hemoglobin,
near-IR absorption spectroscopy is based on relatively weak and
broad overtone and combination bands associated with C-H,
N-H, and O-H vibrational transitions. The development of a
reliable clinical analysis based on measurements of these transi-
tions is difficult, however, due to the small absorptivities associated
with the bands, a strong and temperature-sensitive background
absorbance of water, the highly scattering optical properties of
human tissue, and the multitude of potential spectral interferences
present.

To establish the foundation for actual noninvasive clinical
measurements with human subjects, the analytical merits of
clinical near-IR absorption spectroscopy must be evaluated under
well-controlled laboratory conditions. The fundamental attributes
and limitations of the method can only be established by
identifying and controlling the key physical and chemical param-
eters that affect measurement accuracy and precision.

Toward this goal, our strategy has been to demonstrate the
ability to measure a selected clinical analyte at physiologically
relevant concentrations in relatively simple aqueous solutions and
then increase the matrix complexity in a systematic manner. With
glucose as the analyte of interest, our results have shown that
near-IR spectra over the 5000-4000 cm-1 range contain sufficient
information to permit accurate glucose measurements in the
physiological range of 1-20 mM in phosphate buffer,8 phosphate
buffer with temperature variations from 32 to 41 °C,9 and
phosphate buffer with 60.8 g/dL bovine serum albumin (BSA).10

In these previous studies, the chemical composition of the matrix
was constant for each calibration model, and the ability to extract
glucose information in the presence of reasonable levels of
potential interferences was demonstrated. Furthermore, the
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ability to measure glucose in undiluted bovine plasma has been
demonstrated.11 In this work, three unique plasma matrices were
used to prepare 69 glucose samples. Although the extent of
matrix variation was small, no matrix-dependent systematic errors
were detected in the analysis.

In a related series of experiments, we have demonstrated that
glucose can be measured accurately in samples with matrix
variation. In the first case, a series of binary mixtures of glucose
and glutamine was examined, where the levels of glucose and
glutamine varied independently from 1.7 to 59.9 and from 1.1 to
30.6 mM, respectively.12 A five-component mixture was used in
a subsequent experiment, where the levels of glucose, glutamine,
glutamate, lactate, and ammonia-nitrogen were independently
varied over a concentration range from 1 to 20 mM.13 In both
cases, calibration models could be generated for glucose with
standard errors of prediction below 0.6 mM. In fact, acceptable
calibration models were established for each of the varied species
in these experiments.

In the matrix variation experiments summarized above, each
of the varied species contributed significantly to the near-IR
spectrum because concentrations and absorptivities were similar
for each matrix component. Clinical samples present a more
demanding situation, however, because matrix variations include
endogenous species with much greater near-IR absorbances than
those of glucose. Besides water, protein and triglycerides are the
key endogenous components within clinical samples that exhibit
larger absorbances than glucose in the near-IR region. The
objective of the work presented here is to assess the ability to
measure clinical levels of glucose under conditions where matrix
variations due to model protein and model triglycerides cause
large spectral changes relative to those from glucose. Two
independent matrices have been studied. The first is composed
of a phosphate buffer with five unique levels of triacetin, and the
second is a phosphate buffer with 10 different BSA concentrations.
Triacetin is used to simulate total triglyceride blood levels.
Absorbance features for both triacetin and BSA are significantly
greater than those of glucose, and there is considerable spectral
overlap between the spectral bands.

EXPERIMENTAL SECTION
Apparatus and Reagents. Near-IR spectra were collected

with a Nicolet 740 FT-IR spectrometer (Nicolet Analytical Instru-
ments, Madison, WI), equipped with a 150 W tungsten-halogen
source, a calcium fluoride beam splitter, and a cooled indium
antimonide detector. The spectral range from 5000 to 4000 cm-1

was isolated with a multilayer optical interference filter (Barr
Associates, Westford, MA).

Reagent grade glucose and potassium phosphate salts were
purchased from common suppliers. Triacetin, BSA (fraction V,
part no. A-4503), and 5-fluorouracil were used as received from
Sigma Chemical Co. (St. Louis, MO). All solutions were prepared
with reagent grade, type I water generated from a Milli-Q three-
house purification unit.

Procedures. Standard Solutions. Phosphate buffers were
prepared for both the triacetin and protein matrices. These buffer

solutions contained 0.1 M phosphate, to which 0.044% 5-fluoro-
uracil was added as a preservative.

For the triacetin matrix, the phosphate buffer was adjusted to
pH 7.4, and five solutions were prepared by dissolving the
appropriate amount of triacetin to achieve concentrations of 1564,
1933, 2320, 3093, and 3712 mg/L. These concentrations were
selected to match typical plasma values of triglycerides for normal
subjects.14 Glucose standard solutions were prepared by dissolv-
ing dried glucose powder in each of these triacetin solutions.
Glucose concentrations ranged from 2 to 20 mM at each triacetin
level.

For the protein matrix, the buffer was adjusted to pH 7.2, and
BSA was added to give a 95.0 g/L stock protein solution. A
separate 0.5 M stock glucose solution was prepared in 0.1 M
phosphate buffer. Glucose standards were then prepared by
adding the required volumes of each stock solution to a 10 mL
volumetric flask and then diluting with the 0.1 M phosphate buffer.
Protein levels ranged from 47.5 to 90.25 g/L and glucose levels
from 1.25 to 20.0 mM in order to cover typical physiological
ranges. In all, 110 samples were prepared with 10 unique glucose
concentrations for each of 10 different protein levels and 10
additional glucose solutions with zero protein.

Data Collection and Spectral Processing. Spectra were collected
from solutions placed in a 1 mm path length sample cell composed
of Infrasil quartz (Wilmad Glass Co., Buena, NJ). The standard
solution was heated to 37.0 ( 0.2 °C before being placed in the
sample cell. A thermostated glass jacket was placed around the
cell to maintain the solution temperature at 37 °C. A thermocouple
probe was submerged in the sample during data collection to
ensure the sample temperature was constant. Spectra were
generally collected in triplicate by leaving each sample in the
spectrometer while three consecutive spectra were collected.
In a few instances, only two spectra were obtained for a given
sample.

Spectral information was collected as 256 coadded, double-
sided interferograms with 16 384 points. The corresponding
single-beam spectra were computed by use of the Nicolet SX-FTIR
software package (version 4.4), and the resulting spectra pos-
sessed a point spacing of 1.9 cm-1. Further spectral processing
was accomplished with either a Vax 6400 computer located in the
Gerard P. Weeg Computer Center at the University of Iowa or an
Iris Indigo computer (Silicon Graphics, Inc., Mountain View, CA).
All software was implemented in Fortran 77. Some calculations
made use of subroutines from the IMSL software package (IMSL,
Inc., Houston, TX).

For the triacetin data set, spectra were collected for all glucose
concentrations at a given level of triacetin. The order of triacetin
levels was 1933, 3093, 1564, 2320, and 3712 mg/L. Samples were
selected randomly within a given triacetin level. Background
spectra corresponded to 0.1 M phosphate buffer with no triacetin
present. A single background spectrum was collected at the
beginning of each new triacetin level. Ratioed spectra were
subsequently computed by ratioing all sample single-beam spectra
with a given triacetin level by the background spectrum collected
immediately before these sample spectra were collected.

For the protein data set, samples were selected randomly with
respect to both glucose and protein. Again, background spectra
were collected from 0.1 M phosphate buffer (no protein present).
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A background spectrum was collected at the beginning of the
experiment and then after every fourth sample. This schedule
effectively accounted for minor variations in interferometer align-
ment throughout the course of the data collection period. No
studies were performed to determine the minimum frequency of
background collection needed to reduce errors. The background
spectrum collected before a set of four sample spectra was used
to compute ratioed spectra.

For both data sets, replicate spectra corresponding to a given
sample were kept together as the whole data set was split into
calibration, monitoring, and prediction data sets. In all cases, the
chemical distribution in the prediction data set tracked that in
the calibration data set. Details of how these data sets were
subdivided are provided below.

RESULTS AND DISCUSSION
Spectral Features. Triglycerides and total protein are ex-

amples of matrix components with large near-IR spectral features
that overlap with those of glucose. Successful differentiation of
glucose from triglycerides or albumin protein requires differences
in their spectral absorption features. Differences in the location
of these absorption bands can best be visualized by comparing
normalized spectra. Figure 1 presents normalized absorbance
spectra for 10 mM glucose, 2320 mg/L triacetin, and 66.5 g/L
BSA, where normalization was achieved by scaling the maximum
absorbance in each spectrum to unity. Glucose possesses three
characteristic absorption bands centered at 4750, 4400, and 4300
cm-1. The spectrum of triacetin is dominated by a strong band
centered at 4450 cm-1, with a smaller second band at 4680 cm-1.
This 4450 cm-1 triacetin band overlaps with the 4400 cm-1 glucose
band, and, for equal molar concentrations of glucose and triacetin,
the 4450 cm-1 triacetin band is 5.6 times larger than the 4400

cm-1 glucose band. This overlap and greater absorptivity are
significant because the 4400 cm-1 glucose band provides the most
reliable analytical information in aqueous solutions.5-9 These
findings suggest that information from other glucose bands will
be needed for successful glucose measurements. The spectral
features of BSA also overlap significantly with those of glucose.
Furthermore, absorbances for the protein bands centered at 4370
and 4600 cm-1 are ∼100 times greater than that for the 4400 cm-1

glucose band. Absorbances of 58 and 60 mAU were measured
for these two protein bands, respectively, for a 66.5 g/L solution
of BSA. In comparison, the absorbance at 4400 cm-1 is only 0.48
mAU for a 10 mM glucose solution. Overall, the presence of
glucose is difficult to identify in spectra collected from glucose/
triacetin mixtures and virtually impossible to detect in spectra
collected from glucose/protein mixtures.

The severe overlap and large absorptivities of these matrix
components relative to glucose precludes the use of simple
univariate calibration methods for extracting the glucose informa-
tion from near-IR spectra. Indeed, multivariate calibration meth-
ods have been required in previous studies when the matrix was
either constant5-7 or varied only slightly.8-10 In the work reported
here, partial least-squares (PLS) regression analysis was used to
correlate variations within the spectral data set with different
glucose concentrations. In addition, the merits of using a digital
Fourier filter before the PLS analysis were assessed for both data
sets.

Glucose Measurements with Triacetin. Constant Triacetin.
Before attempting to build valid calibration models for glucose
with a variable triacetin matrix, studies were first undertaken to
verify that glucose could be measured in the presence of a
constant level of triacetin. The highest triacetin level (3712 mg/

Figure 1. Near-IR absorbance spectra over the combination band region for glucose (10 mM), bovine serum albumin (66.5 g/L), and triacetin
(2320 mg/L).
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L) was selected to maximize any adverse effects. The data set
corresponding to 3712 mg/L triacetin consisted of 57 spectra from
19 samples. Spectra from 16 of these samples (48 spectra) were
used to build calibration models, and spectra from the remaining
three samples (nine spectra) were used for prediction to test the
validity of the computed models. The absorbance spectra used
throughout these studies were constructed by use of the single-
beam spectra of the glucose samples and a background single-
beam spectrum collected from 0.1 M phosphate buffer (no
triacetin present).

Two spectral ranges were evaluated. The first (4850-4250
cm-1) included all three glucose absorption bands, while the
second (4470-4250 cm-1) included only the 4400 and 4300 cm-1

bands. A series of calibration models were generated and tested
for each spectral range by varying the number of PLS factors from
1 to 10. The optimum number of factors was identified as the
number that gave the lowest standard error of prediction (SEP),
as described in detail previously.9-11

The best calibration model with the 4850-4250 cm-1 spectral
range was obtained with six PLS factors. This model possessed
a standard error of calibration (SEC) of 0.41 mM, mean percent
error of prediction (MPEP) of 3.0%, and a SEP of 0.29 mM. The
best model for the narrower spectral range was obtained with
seven PLS factors, and the error statistics were essentially the
same as those from the wider range (SEC ) 0.21 mM, MPEP )
1.8%, and SEP ) 0.29 mM). In both cases, the SEC fell
continuously as the number of PLS factors increased, and the SEP
reached a minimum before increasing slightly as the system was
overmodeled. This type of behavior is consistent with our earlier
findings for other spectral data sets.9-11 Overall, these results
demonstrate that valid models can be prepared for glucose in a
matrix with constant triacetin levels.

Variable Triacetin with PLS Alone. The entire data set,
encompassing all five triacetin levels, consisted of 253 spectra
collected from 86 samples. These spectra were divided ran-
domly into calibration (208 spectra from 71 samples) and
prediction (45 spectra from 15 samples) data sets. All replicate
spectra from each sample were placed together in either the
calibration or prediction sets. Six spectral ranges were ex-
amined, and the number of PLS factors was varied from one to
20 for each spectral range. Each spectral range was selected to
incorporate different combinations of the three glucose bands (see
Table 1).

Valid glucose calibrations were obtained with each of the six
spectral ranges tested. Table 1 summarizes the calibration
statistics for each range. Calibration performance was essentially
the same for the first three entries in Table 1, which correspond
to models incorporating multiple glucose bands. For each of these
models, the SEP values ranged from 0.6 to 0.7 mM, and five PLS

factors was found to be optimal. A comparison of measurement
errors for the individual glucose bands indicates that the most
reliable information is obtained from the 4400 cm-1 band, in spite
of the significant overlap with the triacetin band. Calibration
performance with only the 4400 cm-1 band was essentially the
same as those from multiple-band models, but one additional PLS
factor was required. Models based on either the 4750 or 4300
cm-1 band alone required even more factors to achieve nearly
equivalent calibration performance.

Concentration correlation plots are presented in Figure 2 to
illustrate the calibration and prediction data sets for the model
based on the 4850-4250 cm-1 spectral range and five PLS factors.
Glucose concentrations obtained from this model are plotted
against known glucose concentrations for the standard solu-
tions. In addition, the ideal unity line is shown for comparison.
Results from the model correlate well with known values, which
is particularly significant for the prediction data. Points in this
figure are coded according to the triacetin level. Inspection of
these coded points shows that different triacetin levels do not
adversely affect the accuracy of the measurement. Figure 3
highlights this point by plotting percent error in glucose measure-
ments from the prediction data set as functions of glucose and
triacetin concentrations. Although a slight increase in percent
error of prediction is evident as the concentration of glucose
decreases, the increase in percent error does not track with the
concentration of triacetin. Variable tiacetin levels do have an
impact, however, relative to prediction errors from models with
constant triacetin levels. The SEP increases from 0.29 to 0.57
mM when the sample matrix is changed from constant to variable
triacetin. Nevertheless, a prediction ability of 0.57 mM is clinically
acceptable.

As indicated in Table 1, for the first two spectral ranges, values
of SEP are observed that are lower than the corresponding values
for SEC. This is most likely an artifact of the availability of only
15 prediction samples. To provide a further validation test of the
calibration models, a leave-one-out-cross-validation procedure was
performed. In this study, the calibration and prediction sets were
recombined to the full set of 86 samples (253 spectra). The
replicate spectra of each sample were withheld from this set in
turn, with a calibration model being constructed on the basis of
the remaining spectra. The number of PLS factors used for each
spectral range was set at the optimal value found previoulsy and
indicated in Table 1. The resulting model was used to predict
the concentrations of the spectra withheld. A pooled cross-
validation SEP (CV-SEP) was computed on the basis of the results
of the 86 sets of prediction spectra. The computed CV-SEP values
are indicated in the last column of Table 1. As expected, these
values exceed SEC in each case, although for four of the six
spectral ranges, the increase is less than 15%. The cross-validation

Table 1. Results from PLS Glucose Calibrations with Variable Triacetin Levels

spectral range (cm-1) glucose bands (cm-1) PLSa factors SEC (mM) MPEP (%) SEP (mM) CV-SEP (mM)

4850-4250 4750, 4400, 4300 5 0.67 5.13 0.57 0.71
4850-4350 4750, 4400 5 0.73 6.84 0.61 0.77
4470-4250 4400, 4300 5 0.58 8.99 0.70 0.66
4850-4470 4750 8 0.60 7.38 0.68 0.70
4470-4350 4400 6 0.56 7.54 0.69 0.63
4350-4250 4300 9 0.58 9.14 0.92 0.76

a Optimum number of factors (lowest SEP).
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results provide further evidence that the calibration model
parameters found previously are valid and that the models yield
accurate predictions.

Variable Triacetin with Digital Filtering and PLS. Significant
analytical benefits have been demonstrated by incorporating a
digital filtering step before the PLS analysis.8-11 Digital Fourier
filtering effectively reduces noise and baseline variation within
the spectral data set, thereby enhancing spectral quality and
improving analytical performance. Details for coupling this
filtering concept with PLS regression analysis have been dis-
cussed.11

As in previous work, the bandpass Fourier filters used here
were Gaussian shaped, with the specific filter bandpass function
defined by the mean position and standard deviation of the
Gaussian.8-11 The optimum combination of these parameters was

determined by evaluating PLS calibration models built after
passing spectra through the appropriate filter. For this procedure,
the spectra were divided randomly into three data sets, where
one was used to establish the calibration model (calibration set),
one was used to test the predictive ability of the model during
the filter optimization procedure (monitoring set), and the last
was used to evaluate the prediction ability following the completed
process (prediction set). As before, all replicate spectra of a given
sample were kept together in either the calibration, monitoring,
or prediction set. Filter performance was evaluated by comparing
calibration models in terms of the inverse of the sum of the mean
square errors of calibration (MSEC) and prediction (MSEP),
where the MSEP was based on the prediction errors for the
monitoring set. For the measurement of glucose in a variable
triacetin matrix, the calibration, monitoring, and prediction data
sets consisted of 115, 93, and 45 spectra, respectively. The
prediction set used here was the same as that employed in the
analysis based on the use of PLS alone. Thus, the calibration
and monitoring sets were subsets of the original calibration set
used with PLS alone.

The best combination of mean position and standard deviation
(SD) width was identified for the three spectral ranges corre-
sponding to multiple analyte absorption bands (4850-4250, 4850-
4350, and 4470-4250 cm-1) and for the 4700-4200 cm-1 spectral
range, which incorporates both low-frequency bands and part of
the high-frequency band. For each spectral range, calibration
models were evaluated with PLS factors ranging from 3 to 8, and
the mean position and SD width were varied from 0.0 to 0.2f and
from 0.0 to 0.02f, respectively, in a grid search procedure based
on step sizes of 0.001f. These filter bandpass specifications are
based on a linear scale of digital frequency (f) that varies between
0 and a maximum frequency of 0.5f. This optimization procedure
resulted in 4221 (201 × 21) calibration model evaluations for each
number of PLS factors and a total of 25 326 calibration evaluations

Figure 2. Concentration correlation plots for glucose showing (A)
calibration and (B) prediction data for the five-factor PLS model
(4850-4250 cm-1) with triacetin levels of 1564 (0), 1933 (O), 2320
(4), 3093 (3), and 3712 mg/L (]).

Figure 3. Interrelationship between glucose measurement errors
and concentrations of glucose and triacetin.
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for each spectral range. A typical result is shown graphically in
the three-dimensional surface plot presented in Figure 4 for the
4700-4200 cm-1 spectral range with five PLS factors. The surface
reveals a peak superimposed on a ridge of high values. The peak
position gives the optimum filter parameters, which correspond
to a mean position of 0.028f and a SD width of 0.006f. Similar
optimum filter parameters were obtained for all spectral ranges
tested. The best filter parameters and number of PLS factors are
tabulated in Table 2 for each spectral range.

All calibration models based on Fourier filtering coupled with
PLS regression gave approximately the same calibration perfor-
mance regardless of the spectral range. Again, no indication of
prediction bias caused by different levels of triacetin was noted
upon examining concentration correlation plots for each calibration
model listed in Table 2.

Based on the optimal spectral ranges, numbers of PLS factors,
and filter parameters, the cross-validation procedure described
previously was performed. The computed CV-SEP values are also
listed in Table 2. For each spectral range, the value of CV-SEP
exceeds the corresponding values of SEC by no more than 16.5%,
with two of the four values under 10%. This result provides further
validation for the optimized model parameters.

Comparison of values in Tables 1 and 2 reveals that Fourier
filtering enhances calibration performance by providing lower
values for SEC, SEP, MPEP, and CV-SEP. Effective glucose
calibration models can be generated in a variable triacetin matrix,
however, with or without Fourier filtering.

Glucose Measurements with Protein. Glucose measure-
ments with constant protein have been established previously with
60.8 g/L BSA as the sample matrix.10 In this previous work,
glucose could be measured with an overall SEP of 0.24 mM over
the clinically relevant concentration range. Such measurements
were possible despite the strong absorptivity of BSA at 4600 and

4370 cm-1 and the severe overlap between the 4400 and 4370 cm-1

bands for glucose and protein, respectively.
For assessing the ability to measure glucose in a variable

protein matrix, standard solutions were prepared with glucose
concentrations of 1.25, 2.50, 3.75, 5.00, 7.50, 10.00, 12.50, 15.00,
17.50, and 20.00 mM in each of 11 buffered protein solutions.
Buffered protein solutions consisted of 0, 47.5, 52.25, 57.0, 61.75,
66.5, 71.25, 76.0, 80.75, 85.5, and 90.25 g/L BSA. All spectra
corresponding to the 0, 52.25, and 85.5 g/L protein matrices were
removed from the data set and used subsequently to test the
validity of the computed calibration models. Calibration, monitor-
ing, and prediction data sets were assembled from spectra
corresponding to the remaining 80 samples. For processing
without Fourier filtering, 186 spectra from 64 samples were used
as the calibration set, with the remaining 47 spectra from 16
samples serving as the prediction set. For the filter optimization
studies, 46 spectra corresponding to 16 samples were removed
from the calibration set and used as the monitoring set. The
remaining 140 spectra from 48 samples were used as the
calibration set.

Variable Protein with PLS Alone. Calibration models were
constructed over several spectral ranges, and the number of PLS
factors was varied from 1 to 20 for each spectral range. The four
spectral ranges tested corresponded to (a) the full spectral range
(5000-4000 cm-1); (b) a spectral range that incorporated all three
glucose bands but excluded the noisy spectral regions, where little
light is transmitted (4900-4200 cm-1); (c) a range that included
part of the 4750 cm-1 glucose band but retained the two
low-frequency bands for glucose and both protein bands (4600-
4200 cm-1); and (d) a range that contained only the 4400 and
4300 cm-1 glucose bands and one of the protein bands (4500-
4200 cm-1).

PLS calibration models computed over the 4900-4200, 4600-
4200, and 4500-4200 cm-1 spectral ranges produced the charac-
teristic patterns observed previously for SEC and SEP as the
number of PLS factors was increased sequentially from 1 to 20.
SEC values were observed to decrease continuously as more of
the spectral variation was modeled, and SEP values reached a
minimum and then increased as the system was overmodeled.
Both SEC and SEP were observed to decrease rapidly over the
first 4-6 factors before asymptotically approaching minimum
values. Typically, SEC and SEP values were ∼6 mM with a one-
factor model and <0.5 mM with models based on four factors.
Calibration performance values are summarized in Table 3 for the
best model with each spectral range. Also listed in Table 3 are
the results for the same cross-validation experiment described
previously for the triacetin data. The CV-SEP results are highly
consistent with the corresponding SEC values, except for the
5000-4000 cm-1 spectral range.

For the 5000-4000 cm-1 range, the SEP continued to decrease
as the number of factors was increased to 20. This spectral range
includes considerable amounts of noise over the regions from 5000
to 4900 and from 4200 to 4000 cm-1 because of the strong
absorbance of water. This inability to generate functioning
calibration models when noisy regions are included within the
spectral range is consistent with our earlier findings.8,10

Fourier Filtering and PLS Combined. Optimum Fourier filters
were established for the following five spectral ranges: 4900-
4200, 4600-4200, 4850-4460, 4460-4355, and 4355-4255 cm-1.
The 4900-4200 cm-1 range contains all three glucose bands, the

Figure 4. Glucose in triacetin Fourier filter optimization surface map
using a five-factor PLS model over the 4700-4200 cm-1 spectral
range.
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4600-4200 cm-1 range contains primarily the 4400 and 4300 cm-1

glucose bands, and the last three ranges correspond to the single
glucose bands at 4750, 4400, and 4300 cm-1, respectively. The
best combination of mean position and SD width was established
as described above for the variable triacetin matrix. Four PLS
factors were used in each evaluation, and the mean and standard
deviation were systematically varied over a range from 0.0 to 0.05f
with 0.001f step sizes. This corresponds to 2601 (51 × 51)
evaluations for each spectral range. Results of this experiment
are presented in Table 4.

A more detailed investigation was performed to find the best
filter parameters for the 4600-4200 cm-1 spectral range. In the
first experiment, greater resolution was used to refine the optimal
parameter settings. The tested ranges were 0.01-0.03f for the
mean position and 0.0-0.006f for the SD width, with step sizes of
0.0005f and 0.0001f, respectively. Optimum parameters were
0.0205f and 0.0029f for the mean and standard deviation, respec-
tively, which match those found when the wider ranges and larger
step sizes were used.

In addition, the number of PLS factors used during the filter
optimization procedure was varied for the 4600-4200 cm-1

spectral range. Optimum filter parameters were established with
1, 2, 3, 4, 5, 6, 7, 8, 11, and 15 PLS factors. Surface maps for the
results with 3, 4, 5, and 11 factors are presented in Figure 5. The
optimum filter parameters are essentially identical when 1-8
factors are used. As the number of factors increases beyond 8,
however, the region behind the normal ridge structure begins to
dominate, and different filter parameters are obtained (0.013f,
0.003f for 11 factors and 0.006f, 0.004f for 15 factors). This analysis
confirms our previously published results with the constant protein
matrix10 and demonstrates the need to limit the number of factors
used in the filter optimization procedure. Values for the response
function (1/[MSEC + MSEP]) increase as the number of factors

increases from 1 to 4. This value levels off after four factors and
then increases again as the number of factors approaches 11. This
pattern of values for the response function indicates that the first
four PLS factors provide most of the glucose-dependent analytical
information, and spectral noise is modeled after the eleventh
factor.

The best calibration model obtained with a combination of
Fourier filtering and PLS regression corresponds to the 4600-
4200 cm-1 spectral range with four PLS factors and a Fourier filter
defined by a mean position of 0.0205f and SD width of 0.0029f
(see Table 4). Concentration correlation plots for both calibration
and prediction data sets are provided in Figure 6 for this best
model. Protein levels have been denoted in the figure by coding
data points corresponding to low (47-57 g/L), medium (61-71
g/L), and high (76-90 g/L) protein concentrations. These
symbols overlap at all glucose levels, which indicates no bias in
accuracy caused by BSA protein. Analysis of glucose residuals
confirms this conclusion. Plots of glucose residuals as functions
of glucose and protein concentrations reveal that these residuals
are randomly distributed along the zero deviation line. Residuals
are independent of glucose and protein concentrations, which
indicates no interference by protein. The mean glucose residual
is 0.17 mM across all protein concentrations for the prediction
data set.

Cross-validation experiments were also performed for the
calibration models that incorporated digital filtering. The resulting
CV-SEP values are listed in Table 4. The model parameters appear
quite valid, as the maximum difference between corresponding
values of CV-SEP and SEC is <5%.

Comparison of Models from PLS Alone and PLS with Fourier
Filtering. Values in Tables 3 and 4 reveal that there is little
difference in the calibration performance with and without the
additional Fourier filtering step. The best models are obtained

Table 2. Optimum Fourier Filter Parameters for Glucose in Triacetin

spectral range (cm-1) PLS factors mean (f ) SD (f ) SEC (mM) MPEP (%) SEP (mM) CV-SEP (mM)

4850-4250 6 0.029 0.005 0.44 4.73 0.49 0.46
4700-4200 4 0.028 0.006 0.46 4.00 0.50 0.52
4850-4350 5 0.021 0.003 0.47 5.00 0.53 0.51
4470-4250 8 0.021 0.002 0.43 5.73 0.49 0.50

Table 3. PLS Models for Glucose in Variable Protein Matrix

spectral range (cm-1) glucose bands (cm-1) PLSa factors SEC (mM) MPEP (%) SEP (mM) CV-SEP (mM)

5000-4000 4750, 4400, 4300 >20 0.37b 12.1b 0.63b 0.65b

4900-4200 4750, 4400, 4300 6 0.43 3.6 0.23 0.42
4600-4200 1/4 4750, 4400, 4300 6 0.49 3.4 0.25 0.49
4500-4200 4400, 4300 5 0.54 5.2 0.32 0.55

a Optimum number of factors (lowest SEP). b Values obtained with 20 PLS factors.

Table 4. Best Filter Parameters and Calibration Performance with Variable Protein

spectral range (cm-1) meana (f ) SDa (f ) 1/[MSEC + MSEP]a,b PLSc factors SEC (mM) SEP (mM) CV-SEP (mM)

4900-4200 0.026 0.005 4.78 6 0.38 0.23 0.39
4600-4200 0.021 0.003 5.15 4 0.41 0.22 0.39
4850-4460 0.019 0.002 4.81 11 0.36 0.23 0.37
4460-4355 0.019 0.001 4.45 8 0.39 0.23 0.38
4355-4255 0.017 0.001 3.02 6 0.40 0.25 0.39

a Computed with four PLS factors. b Maximum value. c Optimum number of factors (lowest SEP) with given filter parameters.
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with spectral ranges of 4600-4200 and 4900-4200 cm-1 for
algorithms with and without Fourier filtering, respectively. With-
out filtering, the 4600-4200 cm-1 spectral range provides an
essentially equivalent model, and noticeably worse models are
obtained with both the 5000-4000 and 4500-4200 cm-1 ranges.
With filtering, however, model performance is essentially inde-
pendent of spectral range. The same values for SEC and SEP
are obtained even when ranges incorporating single glucose
bands are used. Furthermore, a Fourier filter/PLS model
based on the entire spectral range (5000-4000 cm-1), a Fourier
filter defined by a mean of 0.0205f and standard deviation of
0.0029f, and 10 PLS factors results in SEC and SEP values of
0.39 and 0.25 mM, which are essentially equivalent to the values
listed in Table 4. This performance is strikingly different
compared to the model obtained over this spectral range without
the use of Fourier filtering. The additional filtering step effectively
eliminates noise associated with low light levels at the outer
regions of the spectrum, thereby enhancing calibration perfor-
mance.

A potential limitation in the analysis of the calibration models
described above is the fact that all protein levels in the prediction
data set are represented in both the calibration and monitoring

data sets. A more rigorous test of protein interference is to predict
glucose concentrations from spectra corresponding to protein
concentrations not used in the calibration procedure. Such a test
was used to evaluate the accuracy of models computed with and
without Fourier filtering. Spectra were collected for this purpose
with 10 glucose levels that ranged from 1.25 to 20 mM and protein
levels of 0, 52.25, and 85.5 g/L. Glucose values were predicted
from these spectra with calibration models based on both PLS
alone and PLS coupled with Fourier filtering. In both cases, the
4600-4200 cm-1 spectral range was used with the parameters
specified in Tables 3 and 4.

Accurate glucose predictions were achieved from both calibra-
tion models at each of the tested protein levels. The correspond-
ing correlation plots are presented in Figure 7. Computed SEP
values across all 10 glucose concentrations in matrices with 0,
52.25, and 85.5 g/L BSA were 0.70, 0.30, and 0.53 mM, respec-
tively, for the model based on PLS alone and 0.90, 0.24, and 0.38
mM, respectively, for the model based on PLS with Fourier
filtering. Prediction errors with 52.25 and 85.5 g/L BSA are
similar to the SEC and SEP values listed in Tables 3 and 4.
Prediction errors from spectra without protein are slightly larger
than the others, which is not surprising because zero protein

Figure 5. Fourier filter optimization surface maps for glucose with protein using (A) 3, (B) 4, (C), 5, and (D) 11 PLS factors with the 4600-
4200 cm-1 spectral range.
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requires extrapolation to a condition not encompassed within the
calibration data. Prediction ability in this experiment is essentially
equivalent for the two calibration models.

Chemical Differentiation by Fourier Filtering. In our work
with measuring clinically relevant levels of glucose in different
aqueous matrices, similar Fourier filters have been obtained.
Optimum values for filter parameters with the variable protein
matrix are similar for each spectral range tested (see Table 4). In
addition, these values are essentially the same as those for the
variable triacetin matrix (see Table 2). Similar values are
published for matrices of fixed protein10 and for phosphate buffer
with different temperatures.9 In all cases, the mean position is
∼0.02f, while the SD width is much smaller, ranging from 0.007f
to 0.001f.

The similarity of these filter bandpass parameters raises the
question of whether the parameters are specific for glucose in

aqueous solutions. Futhermore, can Fourier filtering selectively
distinguish different chemical species on the basis of different
bandwiths? Fourier-filtered near-IR spectra have been analyzed
to begin addressing these fundamental questions.

The presence of glucose-dependent information in near-IR
spectra collected from buffered protein solutions is evident when
the effect of protein is removed by use of a background spectrum
collected from a glucose-free buffered protein solution. Figure
8A shows a series of five near-IR spectra that have been filtered
with a Gaussian-shaped filter bandpass defined by a mean position
of 0.0205f and standard deviation of 0.0029f. In this case, the
original absorbance spectra correspond to different glucose
concentrations with 47.5 g/L BSA in both the sample and

Figure 6. Concentration correlation plots for glucose showing (A)
calibration and (B) prediction data for a four-factor PLS model (4600-
4200 cm-1) coupled with Fourier filtering (mean ) 0.021f; SD )
0.003f) with low (0), medium (3), and high (O) protein levels.

Figure 7. Concentration correlation plots for glucose predictions
from spectra corresponding to samples with protein levels different
from those used in the calibration data set. Graph A corresponds to
predictions from the four-factor PLS model (4600-4200 cm-1) without
Fourier filtering, and graph B corresponds to predictions from the four-
factor PLS model (4600-4200 cm-1) with Fourier filtering with protein
levels of 0 (O), 52.25 (0), and 80.5 g/L (]).
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background solutions. As noted before, these filtered spectra
resemble derivative spectra.11 Fourier-filtered spectra for glucose
are characterized by a dominant feature centered at 4400 cm-1,
which corresponds to the middle glucose absorption band in
Figure 1. As shown in Figure 8A, the magnitude of this feature
is on the order of tenths of milliabsorbance units for millimolar
levels of glucose, and, as expected, this magnitude correlates with
glucose concentration.

Fourier-filtered spectra are significantly different when protein
is not included in the background spectrum. Figure 8B shows
filtered spectra generated from the same sample single-beam
spectra used in Figure 8A but with a protein-free phosphate buffer
as the background spectrum (as used in the calibration work
described above). The resulting features are considerably dif-
ferent compared to Figure 8A. The predominant feature has
shifted from 4400 to 4370 cm-1. In addition, the magnitude of

this main feature is ∼10 times larger than before, and it does not
correlate with glucose concentration. Figure 8C shows Fourier-
filtered spectra where the glucose level has been held constant
at 10 mM and the protein level varies. Clearly, the spectral
features in Figure 8B and C correspond to protein and not
glucose.

Analysis of spectra collected from mixtures of glucose and
triacetin reveals similar results.15 The predominant features in
glucose/triacetin spectra after Fourier filtering correspond to
triacetin. The largest feature is centered at 4450 cm-1, and the
magnitude of this feature depends on triacetin levels and is
independent of glucose concentration.

The principal conclusion from the above spectral analysis is
that the Fourier filters used in this work, and identified as optimal

(15) Chung, H. Ph.D. Dissertation, University of Iowa, Iowa City; IA, 1994.

Figure 8. Effect of Fourier filtering (mean ) 0.0205f; SD ) 0.0029f) on spectra with (A) different glucose levels, constant protein (47.5 g/L),
and protein in the reference solution; (B) different glucose levels, constant protein (47.5 g/L), and 0.1 M phosphate buffer as the reference
solution; and (C) constant glucose (10 mM), different protein levels, and 0.1 M phosphate buffer as the reference solution. Order of spectra
from bottom to top at 4400 cm-1 for A and 4370 cm-1 for B and C corresponds to glucose concentrations of 2.5, 5.0, 10, 15, and 20
mM for A; glucose concentrations of 10, 2.5, 20, 5.0, and 15 mM for B; and BSA concentrations of 47.5, 57.0, 66.5, 76.0, and
85.5 g/L for C.
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for glucose, cannot selectively distinguish glucose from chemical
interferences such as BSA and triacetin. As illustrated by Figure
8, significant amounts of signal due to the interfering species pass
through such filters. This places the burden of selectivity on the
ability of the PLS algorithm to separate overlapping spectral
features. Figure 9 illustrates this point further by providing a
comparison of the Fourier domain signals arising from the glucose
and BSA spectra plotted in Figure 1. To generate Figure 9, the
ranges of 4600-4200 cm-1 in the glucose and BSA absorbance
spectra were windowed with a Hamming function, zero-filled to
1024 points, and Fourier transformed. Over the range of 0.0-
0.05f, Figure 9 plots the amplitude (magnitude) spectra re-
sulting from this operation for glucose (solid line) and BSA
(dashed line). The dash-dot line in the figure plots the same
Gaussian-shaped filter bandpass used in generating Figure 8.
Through the application of the filter, the signals at digital
frequencies outside this bandpass are eliminated from the absor-
bance spectrum. Due to the presence of much greater absorbance
values in the BSA spectrum and only slightly different spectral
bandwidths between glucose and BSA, the Fourier domain
spectrum of BSA severely overlaps and swamps the glucose
spectrum. While only ∼3% of the total area of the Fourier domain
spectrum of BSA passes through the filter (versus 15% of the
glucose spectrum), the large BSA absorbance still dominates the
filtered spectrum.

Although these Fourier filters do not selectively pass individual
compounds, different compounds with different spectral band-
widths do yield different filter bandpass parameters in order to
obtain an optimal response. For example, the spectral data set
described above for measurement of glucose in a variable protein
matrix has been used to identify optimal Fourier filter parameters
for the measurement of protein. The ideal mean position and SD

width for protein measurements are 0.17f and 0.0046f, respectively.
The corresponding surface map for protein is presented in Figure
10. The surface map for protein shows a ridge-shaped feature
similar to that for glucose, but the best filtering parameters are
considerably larger than those identified for glucose. The Fourier
filtering step is of little value for the measurement of protein
because of the strong absorbances involved. Indeed, a two-factor
PLS model constructed without the use of filtering provides the
same calibration performance as a two-factor PLS model with
filtering. The values of SEP for both models were 1.1 g/L, and
the MPEP values were 1.2 and 1.3%, respectively.16

CONCLUSIONS
The results presented above demonstrate the ability to measure

glucose with acceptable clinical accuracy in matrices with variable
levels of triacetin and albumin protein. Glucose prediction errors
of 0.5 and 0.2 mM are common for calibration models with variable
triacetin and protein, respectively. Such measurements are
possible in spite of the strong overlap between the key glucose
absorption features and those from the matrix components. These
results continue to lend confidence to the feasibility of using near-
IR spectroscopy for both routine and noninvasive clinical measure-
ments. The matrix variations used in this work represent those
of normal plasma values. Additional experiments are needed to
assess performance under abnormal ranges of proteins and
triglycerides.

The primary benefits of digital Fourier filtering on the analysis
are reductions of both high-frequency noise and baseline varia-
tions. As implemented in our work, Fourier filtering is not capable
of selectively extracting information pertaining to one analyte over
another when the spectral bandwidths are similar, such as for

(16) Pan, S. Ph.D. Dissertation, University of Iowa, Iowa City, IA, 1995.

Figure 9. Fourier domain amplitude spectra of glucose (solid line)
and BSA (dashed line), with the optimal Gaussian-shaped filter
bandpass superimposed (dash-dot line). The glucose and BSA
absorbance spectra displayed in Figure 1 were used to generate these
amplitude spectra.

Figure 10. Fourier filter optimization surface map for two-factor PLS
model (4800-4200 cm-1) for protein measurements.
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glucose, BSA, and triacetin. In general, Fourier filtering does
reduce the dependency of the calibration model on spectral range
and the number of PLS factors required to achieve the best
calibration model.
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